Decomposition and Dynamic Cut Generation in Integer Linear Programming

نویسندگان

  • Ted K. Ralphs
  • Matthew V. Galati
چکیده

Decomposition algorithms such as Lagrangian relaxation and Dantzig-Wolfe decomposition are well-known methods that can be used to generate bounds for mixed-integer linear programming problems. Traditionally, these methods have been viewed as distinct from polyhedral methods, in which bounds are obtained by dynamically generating valid inequalities to strengthen a linear programming relaxation. Recently, a number of authors have proposed methods for integrating dynamic cut generation with various decomposition methods to yield further improvement in the computed bounds. In this paper, we describe a framework within which most of these methods can be viewed from a common theoretical perspective. We then show how the framework can be extended to obtain a new technique we call decompose and cut. As a by-product, we describe how these methods can take advantage of the fact that solutions with known structure, such as those to a given relaxation, can frequently be separated much more easily than arbitrary solutions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RESOLUTION METHOD FOR MIXED INTEGER LINEAR MULTIPLICATIVE-LINEAR BILEVEL PROBLEMS BASED ON DECOMPOSITION TECHNIQUE

In this paper, we propose an algorithm base on decomposition technique for solvingthe mixed integer linear multiplicative-linear bilevel problems. In actuality, this al-gorithm is an application of the algorithm given by G. K. Saharidis et al for casethat the rst level objective function is linear multiplicative. We use properties ofquasi-concave of bilevel programming problems and decompose th...

متن کامل

Decomposition and Dynamic Cut Generation in Integer Programming: Theory and Algorithms

Decomposition algorithms such as Lagrangian relaxation and Dantzig-Wolfe decomposition are well-known methods that can be used to compute bounds for integer programming problems. We discuss a framework for integrating dynamic cut generation with traditional decomposition methods in order to obtain improved bounds and present a new paradigm for separation called decompose and cut. The methods we...

متن کامل

Decomposition and Dynamic Cut Generation in Integer Programming

Decomposition algorithms such as Lagrangian relaxation and Dantzig-Wolfe decomposition are well-known methods that can be used to develop bounds for integer programming problems. We draw connections between these classical approaches and techniques based on generating strong valid inequalities. We also discuss several methods for incorporating dynamic cut generation into traditional decompositi...

متن کامل

Stochastic Short-Term Hydro-Thermal Scheduling Based on Mixed Integer Programming with Volatile Wind Power Generation

This study addresses a stochastic structure for generation companies (GenCoʼs) that participate in hydro-thermal self-scheduling with a wind power plant on short-term scheduling for simultaneous reserve energy and energy market. In stochastic scheduling of HTSS with a wind power plant, in addition to various types of uncertainties such as energy price, spinning /non-spinning reserve prices, unc...

متن کامل

Accelerating the Composite Power System Planning by Benders Decomposition

This paper presents an application of Benders decomposition to deal with the complexities in the simultaneous Generation Expansion Planning (GEP) and Transmission Expansion Planning (TEP). Unlike the power system operation fields of study, the power system planning methods are not expected to be fast. However, it is always preferable to speed up computations to provide more analysis options for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 106  شماره 

صفحات  -

تاریخ انتشار 2006